6 research outputs found

    Do MODIS-defined dust sources have a geomorphological signature?

    Get PDF
    The preferential dust source (PDS) scheme enables large-scale mapping of geomorphology in terms of importance for dust emissions but has not been independently tested other than at local scales. We examine the PDS qualitative conceptual model of surface emissivity alongside a quantitative measurement of dust loading from Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue Collection 6 for the Chihuahuan Desert. The predicted ranked importance of each geomorphic type for dust emissions is compared with the actual ranked importance as determined from the satellite-derived dust loading. For this region, the predicted variability and magnitude of dust emissions from most surface types present coincides with the observed characteristics demonstrating the significance of geomorphological controls on emission. The exception is for areas of low magnitude but persistent emissions such as alluvial surfaces where PDS overpredicts dustiness. As PDS is a good predictor of emissions and incorporates surface dynamics it could improve models of future dust emissions

    Preferential dust sources: a geomorphological classification designed for use in global dust-cycle models

    Get PDF
    We present a simple theoretical land-surface classification that can be used to determine the location and temporal behaviour of preferential sources of terrestrial dust emissions. The classification also provides information about the likely nature of the sediments, their erodibility and the likelihood that they will generate emissions under given conditions. The scheme is based on the dual notions of geomorphic type and connectivity between geomorphic units. We demonstrate that the scheme can be used to map potential modern-day dust sources in the Chihuahuan Desert, the Lake Eyre Basin and the Taklamakan. Through comparison with observed dust emissions, we show that the scheme provides a reasonable prediction of areas of emission in the Chihuahuan Desert and in the Lake Eyre Basin. The classification is also applied to point source data from the Sahara to enable comparison of the relative importance of different land surfaces for dust emissions. We indicate how the scheme could be used to provide an improved characterisation of preferential dust sources in global dust-cycle models

    A clarion call for aeolian research to engage with global land degradation and climate change

    Get PDF
    This editorial represents a clarion call for the aeolian research community to provide increased scientific input to the Intergovernmental Panel on Climate Change (IPCC) and the United Nations Convention to Combat Desertification (UNCCD) and an invitation to apply for ISAR funding to organize a working group to support this engagement

    Geomorphology of the Chihuahuan Desert based on potential dust emissions

    Get PDF
    The Chihuahuan Desert of central northern Mexico and southern Arizona, New Mexico and Texas, USA, is a regionally significant dust 'hot-spot' in North America. Typical of other such hot-spots, this desert consists of a mosaic of geomorphological settings, each of which has a varying propensity for dust emission. Recently, a classification system of dust emission potential based on surface geomorphic characteristics that establishes a common framework for describing the land surface has been proposed. The classification is readily applicable to different dust source regions and designed to facilitate comparison of the relative potential dust contributions and emissivity of varying geomorphological environments in such regions. The map here (1:3,500,000) was compiled by applying the new classification to a base map of polygons from existing soil and landform maps that were produced by national government agencies. Within the study area, 11 of the 17 possible geomorphic classes were present, the most extensive being unarmoured, unincised high relief alluvial surfaces, which covered 43% of the area. As an example of how empirical dust source point data can be used with the classification, the satellite-observed origins of dust plumes for 26 major wind erosion events from 2001 to 2009 were overlain on the map. Despite a total area of only 4%, ephemeral lakes were the source of 48% of the observed plumes. This map and the relationships derived from it provide the basis for developing equivalent maps in other dusty regions, and mark a step toward improving the representation and documentation of the strength of dust sources in numerical mineral aerosol models

    Fugitive gypsum dust deposition on a Neighboring Wildlife Refuge, Antioch Dunes, California, USA

    No full text
    Fugitive dust emissions play an important role in urban air quality. Much research on fugitive dust’s effects has focused on human health and societal impacts, with limited work investigating effects on other species. The endangered Apodemia mormo langei butterfly is endemic to the Antioch Dunes, a small area on the south bank of the San Joaquin River in northern California, largely protected as a National Wildlife Refuge. Between the two protected portions of the dunes is a gypsum processing facility. Deposition of gypsum dust may adversely affect endangered insects, especially in their vulnerable larval life stage. Persistent westerly winds blow from the western section of the refuge, across the industrial facility, to the eastern protected dune area. Ambient particulate matter (PM) was collected at 30 sites in both sections of the refuge using passive samplers deployed at times matching the butterfly life cycle. The prevailing wind maintained upwind-downwind sampling orientation throughout the study. PM samples were analyzed for total mass, and elemental composition via X-ray fluorescence. Downwind concentrations of gypsum-related elements were between 4 (strontium) and 12 (sulfur) times higher than upwind loadings, suggesting deposition of PM from the gypsum facility. The effect of fugitive emissions was strongest at the industrial facility’s fenceline, closest to a conveyor belt that loads gypsum. Combined with documented reductions in insect larval longevity when exposed to gypsum dust, the results suggest that gypsum deposition may be affecting the ecosystem and endangered species in the downwind unit of the Antioch Dunes National Wildlife Refuge.</p
    corecore